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Meyer �Phys. Rev. E 50, 1485 �1994�� analyzed the filtering mechanism of polarizing a stored beam by
scattering from an internal polarized target. We noticed in Meyer’s derivation of Eq. �4� of that paper that he
had added a new twist to an old argument �W. Brückner et al., Physics with Antiprotons at LEAR in the ACOL
Era: Proceedings of the Third LEAR Workshop, Tignes, Savoie, France, January 19–26, 1985 �Editions Fron-
tières, Gif-sur-Yvette, France, 1985�, p. 245� by allowing some particles that are spin flipped to be kept in the
beam. We show that this invalidates the old result and leads to a more complicated expression for the buildup
of polarization.
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In his paper �2�, Meyer performed a more critical analysis
of the theory behind polarization filtering �3� with respect to
understanding the deviation of the results of a previous ex-
periment �4� from the theoretical expectation �1�. Meyer
gives the polarization rate �Eq. �2� of Ref. �2��
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which he obtained by differentiating the common definition
of the beam’s polarization,

PB =
N↑ − N↓

N↑ + N↓
, �2�

with respect to time t where N↑ and N↓ are the number of
beam particles in the spin-up and -down states, respectively.
He also states that the derivatives on the right side of Eq. �1�
can be nonzero due to both losses and spin flipping. He then
invokes some proportionality arguments, i.e., that the result-
ant polarization scales linearly with the target polarization
PT, target thickness d, and revolution frequency fR. He says
that what remains is a “constant of proportionality” �̂ that is
essentially a “polarizing cross section.” From this argument
he then obtains the differential polarization rate in his Eq. �3�
of Ref. �2�:

dPB
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= �1 − PB

2�fRdPT�̂ . �3�

This equation is sound for the case of no spin flipping, since
in that case neither of the fractional rate derivatives
�1/N↑�dN↑ /dt and �1/N↓�dN↓ /dt involve the other spin state,
and so the terms inside the large parentheses of Eq. �1�
would depend on the above scaling parameters only as indi-
cated in Eq. �3�. Without spin flipping, each equation for
decay rate of the number of particles in a given spin state is
independent of the other state.

However, spin flipping is a mechanism that moves par-
ticles from one spin state to the other spin state, so now there

is a coupling between the spin-up and spin-down decay rates.
For simplicity, let us assume that the target is fully polarized
�PT=1� with any other target parameters such as thickness
and density held constant. Also assume that the beam’s revo-
lution frequency is constant. Differential equations for these
rates of both spin states may be written in the form
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where a and d are negative constants determined by particle
loss from non-spin-flip processes and spin-flip transitions re-
sulting in momenta outside the acceptance of the accelera-
tor’s transverse and longitudinal momentum apertures. The
positive constants b and c are due to an increase in numbers
from the opposite state.

The matrix
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c d
� �5�

has eigenvalues
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corresponding to the unnormalized eigenvectors

v+ = � b

�+ − a
�, v− = ��− − d

c
� , �7�

at least in nondegenerate cases. Diagonalizing the matrix M
yields

M� = R−1MR = ��+ 0

0 �−
� , �8�

where

R = � b �− − d

�+ − a c
� . �9�

By expanding N↑ and N↓

�N↑
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� = C1v+ + C2v−, �10�
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we can transform Eq. �4� into
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This is easily solved, giving

�C1�t�
C2�t�

� = �C1�0�e�+t

C2�0�e�−t � , �12�

where the Cj�0� are the initial values at t=0. Multiplying by
R to transform back to the original coordinates we have
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N↓�t�

� = �bC1�0�e�+t + ��− − d�C2�0�e�−t

��+ − a�C1�0�e�+t + cC2�0�e�−t � . �13�

Solving for C1�0� and C2�0� in terms of initial conditions
N↑�0� and N↓�0� produces
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where � is the determinant of R. Substituting these results
into the previous equation yields
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The polarization of the beam is

PB�t� =
N↑�t� − N↓�t�
N↑�t� + N↓�t�

=
�b + a − �+��cN↑�0� + �d − �−�N↓�0��e�+t + ��− − d − c���a − �+�N↑�0� + bN↓�0��e�−t

�b − a + �+��cN↑�0� + �d − �−�N↓�0��e�+t + ��− − d + c���a − �+�N↑�0� + bN↓�0��e�−t , �16�

or if we assume an initial polarization of zero with N↑�0�=N↓�0� then

PB�t� =
�b + a − �+��c + d − �−��e�+t − e�−t�

�b − a + �+��c + d − �−�e�+t + �b + a − �+��c − d + �−�e�−t . �17�

When there is no spin flipping b=c=0, the polarization simplifies to
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The sign ambiguity can be resolved by realizing that if d is
more negative than a, then the scattering will yield a net
positive polarization with �a−d� /2�0, so

PB = tanh�a − d

2
t� . �19�

This result agrees in the hyperbolic tangent form with the
earlier non-spin-flip prediction of Ref. �1�. Equation �19�
also has the same functional form as Meyer’s Eq. �4� �see
Ref. �2��:

PB�t� = tanh�tfRdPT�̂� , �20�

but the functional form of Eq. �17� deviates from the form of
a hyperbolic tangent dependence when spin flipping is al-
lowed with b and c being nonzero. So we must conclude that
Meyer’s Eq. �4� is incorrect given that he allows some par-
ticles to remain in the beam after having their spins flipped.

Recently another report �5� appeared which gives an
equivalent derivation in terms of kinetic equations and shows
that the spin-flip terms are indeed very small.

This work was performed under the auspices of the U.S.
Department of Energy.
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