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Meyer [Phys. Rev. E 50, 1485 (1994)] analyzed the filtering mechanism of polarizing a stored beam by
scattering from an internal polarized target. We noticed in Meyer’s derivation of Eq. (4) of that paper that he
had added a new twist to an old argument [W. Briickner et al., Physics with Antiprotons at LEAR in the ACOL
Era: Proceedings of the Third LEAR Workshop, Tignes, Savoie, France, January 19-26, 1985 (Editions Fron-
tieres, Gif-sur-Yvette, France, 1985), p. 245] by allowing some particles that are spin flipped to be kept in the
beam. We show that this invalidates the old result and leads to a more complicated expression for the buildup

of polarization.
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In his paper [2], Meyer performed a more critical analysis
of the theory behind polarization filtering [3] with respect to
understanding the deviation of the results of a previous ex-
periment [4] from the theoretical expectation [1]. Meyer
gives the polarization rate [Eq. (2) of Ref. [2]]

dpP I( 1dN;, 1dN
—B=(1—P§>—(——f———L), (1)
dt 2\N; dt N dt

which he obtained by differentiating the common definition
of the beam’s polarization,
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with respect to time 7 where N; and N, are the number of
beam particles in the spin-up and -down states, respectively.
He also states that the derivatives on the right side of Eq. (1)
can be nonzero due to both losses and spin flipping. He then
invokes some proportionality arguments, i.e., that the result-
ant polarization scales linearly with the target polarization
P, target thickness d, and revolution frequency f. He says
that what remains is a “constant of proportionality” & that is
essentially a “polarizing cross section.” From this argument
he then obtains the differential polarization rate in his Eq. (3)
of Ref. [2]:

Lo _ (1= P fapss. ()
dt

This equation is sound for the case of no spin flipping, since
in that case neither of the fractional rate derivatives
(1/Ny)dN,/dt and (1/N)dN,/dt involve the other spin state,
and so the terms inside the large parentheses of Eq. (1)
would depend on the above scaling parameters only as indi-
cated in Eq. (3). Without spin flipping, each equation for
decay rate of the number of particles in a given spin state is

independent of the other state.
However, spin flipping is a mechanism that moves par-
ticles from one spin state to the other spin state, so now there
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is a coupling between the spin-up and spin-down decay rates.
For simplicity, let us assume that the target is fully polarized
(Py=1) with any other target parameters such as thickness
and density held constant. Also assume that the beam’s revo-
lution frequency is constant. Differential equations for these
rates of both spin states may be written in the form

-G e
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where a and d are negative constants determined by particle
loss from non-spin-flip processes and spin-flip transitions re-
sulting in momenta outside the acceptance of the accelera-
tor’s transverse and longitudinal momentum apertures. The
positive constants b and ¢ are due to an increase in numbers
from the opposite state.

The matrix
M= (a b ) 5)
“\c d
has eigenvalues
a+d a-d\?
)\i = + + bc (6)
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corresponding to the unnormalized eigenvectors

b A_—d
v+=()\+—a)’ U_=< c )’ @)

at least in nondegenerate cases. Diagonalizing the matrix M
yields

M'=R'MR= (M 0 ) (8)
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By expanding N; and N|
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we can transform Eq. (4) into
d(C A, 0)/C
de)-Ge)  w
dt\C, 0 A/\G,
This is easily solved, giving
C(t C,(0)eM!
(ci0)_(coe) -
(1)) \Cy(0)e™-
where the C;(0) are the initial values at #=0. Multiplying by

R to transform back to the original coordinates we have

N (1) A

The polarization of the beam is
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Solving for C;(0) and C,(0) in terms of initial conditions
N;(0) and N (0) produces
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where A is the determinant of R. Substituting these results
into the previous equation yields
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When there is no spin flipping b=c=0, the polarization simplifies to
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The sign ambiguity can be resolved by realizing that if d is Py(1) = tanh(tfrdP;6), (20)

more negative than a, then the scattering will yield a net
positive polarization with (a—d)/2>0, so

a—-d
Py= tanh(TI) ) (19)

This result agrees in the hyperbolic tangent form with the
earlier non-spin-flip prediction of Ref. [1]. Equation (19)
also has the same functional form as Meyer’s Eq. (4) (see
Ref. [2]):

but the functional form of Eq. (17) deviates from the form of
a hyperbolic tangent dependence when spin flipping is al-
lowed with b and ¢ being nonzero. So we must conclude that
Meyer’s Eq. (4) is incorrect given that he allows some par-
ticles to remain in the beam after having their spins flipped.

Recently another report [5] appeared which gives an
equivalent derivation in terms of kinetic equations and shows
that the spin-flip terms are indeed very small.

This work was performed under the auspices of the U.S.
Department of Energy.
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